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We present in detail a theoretical framework for representing hydrodynamic
systems through a systematic discretization of the Boltzmann kinetic equation. The
work is an extension of a previously proposed formulation. Conventional lattice
Boltzmann models can be shown to be directly derivable from this systematic
approach. Furthermore, we provide here a clear and rigorous procedure for obtaining
higher-order approximations to the continuum Boltzmann equation. The resulting
macroscopic moment equations at each level of the systematic discretization give rise
to the Navier–Stokes hydrodynamics and those beyond. In addition, theoretical
indications to the order of accuracy requirements are given for each discrete
approximation, for thermohydrodynamic systems, and for fluid systems involving
long-range interactions. All these are important for complex and micro-scale flows
and are missing in the conventional Navier–Stokes order descriptions. The resulting
discrete Boltzmann models are based on a kinetic representation of the fluid dynamics,
hence the drawbacks in conventional higher-order hydrodynamic formulations can
be avoided.

1. Introduction
The fundamental task of non-equilibrium statistical mechanics is to deduce the

evolution of the macroscopic state of physical systems from the knowledge of
their underlying microscopic dynamics. For a given physical system, descriptions
with vastly different degree of detail may be devised depending on the purposes at
hand. For the classic gas system consisting of N particles in three-dimensions, the
most detailed description is the Hamilton representation which describes the system
by the 3N generalized coordinates and 3N momenta of the consisting particles
obeying the Hamilton canonical equation. Alternatively, using the Gibbs ensemble of
a large number of identical systems, we can describe the system by a 6N -dimensional
continuum probability distribution function governed by the Liouville equation. This
leads exactly to the BBGKY infinite hierarchy, with the kinetic equation governing the
evolution of the six-dimensional single-particle distribution function as its first tier (see
Bogoliubov 1962; Liboff 1969). If molecular chaos is assumed, the kinetic equation
can be closed and the gas system is described by the single-particle distribution
function governed by the celebrated Boltzmann equation (see Cercignani 1975). At
each level of these reductions, certain details of the previous level of description are
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deemed as unimportant and sacrificed for greater simplicity and solvability. Obtaining
the simplest description that is easy to solve and encompasses as much as possible the
essential physics is at the heart of non-equilibrium statistical mechanics. In this paper,
we attempt to give a representation of the classical gas systems which includes much
of the physics in the kinetic equation yet with a simpler form and better solvability
than the conventional thermodynamic descriptions.

Deriving macroscopic descriptions from the kinetic equation was the central topic
of kinetic theory during its development. Naturally, as the lowest velocity moments
of the distribution function, the thermodynamic variables, i.e. density, flow velocity
and temperature, satisfy the conservation equations of mass, momentum and energy.
However, the conservation equations are not closed because of the presence of
higher moments such as the momentum stress and heat flux. In the conventional
Chapman–Enskog successive approximation (Chapman & Cowling 1970), closures
are made by approximating the fluxes in terms of the basic state variables and their
spatial and temporal derivatives. The approximation can be carried out successively
to obtain the Euler, Navier–Stokes, Burnett equations, and so on. A vast majority of
practical applications can be satisfactorily described by the Navier–Stokes equation,
especially for single-phase large-scale Newtonian flows. However, deficiencies appear
in more complex and general flow regimes involving multiple phases, high Mach
numbers, or high Knudsen numbers. In those situations, higher-order hydrodynamic
descriptions become necessary. Unfortunately, the complexity of the Chapman-Enskog
calculation increases tremendously as the order of approximation increases, yielding
highly nonlinear high-order partial differential equations. Worse still, it is well-known
that the higher-order corrections in the gradient expansion to the Navier–Stokes
equations are ill-posed and many questions about the meaningfulness of the Chapman-
Enskog solutions to the Boltzmann equations have been raised (Cercignani 1975;
Ernst et al. 1978). Mode-coupling theories (Ernst & Dorfman 1975; Ernst et al.
1978) and computer simulations (Standish 1999) have revealed that the transport
coefficients corresponding to the Burnett and super-Burnett terms actually diverge in
the thermodynamic limit, indicating non-analytic (in the gradients) corrections.

In an alternative approach, Grad (1949b, 1952) proposed to approximate the
Boltzmann equation by expanding the single-particle distribution function on the basis
of the Hermite orthogonal polynomials in velocity space. The Hermite polynomials
are chosen because the expansion coefficients are exactly the velocity moments of the
distribution function. The truncation of higher-order terms in a Hermite expansion
do not directly alter the velocity moments of the distribution function. The resulting
equations for the Hermite coefficients are directly constructed out of projecting
Boltzmann equation onto a truncated Hermite polynomial basis using the standard
Galerkin procedure. Grad kept thirteen of the leading Hermite coefficients, essentially
the five fundamental thermohydrodynamic variables (mass density, fluid velocity and
internal energy) and their fluxes, as the state variables and obtained a closed system
of partial differential equations known as the Grad 13-moment system. It has been
shown that this description contains far more physics than that in the Navier–Stokes
(see Gad-el-Hak 1999; Agarwal, Yun & Balakrishnan 2001). Unfortunately, the Grad
13-moment equations are just as complicated and difficult to solve as those obtained
by higher-order Chapman-Enskog expansions.

Quite independent of the continuum kinetic theory, the lattice Boltzmann methods
(LBM) (McNamara & Zanetti 1988; Benzi, Succi & Vergassola 1992; Qian,
d’Humieres & Lallemand 1992; Chen, Chen & Matthaeus 1992a; Chen & Doolen
1998) originated from lattice gas cellular automaton models (Frisch, Hasslacher &



Kinetic theory of hydrodynamics 415

Pomeau 1986; Wolfram 1986; Doolen 1989). Over the decade since its conception,
LBM has quickly been shown to be an accurate and efficient method for computa-
tional fluid dynamics (CFD) simulations (Chen et al. 1992b; Martı́nez et al. 1994; Hou
et al. 1995; Shan 1997; Chen et al. 1998). Comparing with traditional CFD methods,
the LBM method is easy to implement, intrinsically parallelizable, and handles com-
plex boundary conditions well. More importantly, owing to its kinetic nature, the LBM
method allows the microscopic physics responsible for many complex fluid phenomena
to be modelled more directly (Shan & Chen 1993, 1994; Shan & Doolen 1995; Nekovee
et al. 2000; Chin, Boek & Coveney 2002; Sankaranarayanan et al. 2002). However,
the original LBM formulations of Qian et al. (1992) and Chen et al. (1992a) do not
provide a systematic way of deriving lattice Boltzmann models, particularly when
thermohydrodynamics involving a conserved energy degree of freedom is considered
(Alexander, Chen & Sterling 1993; McNamara & Alder 1993; Chen, Ohashi &
Akiyama 1994; Chen, Teixeira & Molvig 1997). Instead, the equilibrium distribution
function is chosen as a polynomial form in power of fluid velocity with the coefficients
determined a posteriori by requiring that the resulting first-order Chapman-Enskog
expansion must recover the Navier–Stokes equation. Although it was later pointed
out by Abe (1997) and He & Luo (1997) that the equilibrium distribution function
is, in fact, small velocity expansions of the Maxwell–Boltzmann distribution, and
the discrete velocities are, in fact, the abscissae of Gaussian–Hermite quadratures
to ensure accurate evaluation of leading moments of the distribution, there is no
rigorous and systematic way of formulating models that accomplish higher-order
hydrodynamic physics. In fact, the present LBM approach has not been extended
beyond the level of the Navier–Stokes. This has generated some confusion and mis-
statements in the community, such as that LBM is only valid for Navier–Stokes
hydrodynamics.

Inspired by Grad’s original work, Shan & He (1998) proposed a new theoretical
approach for discretizing the Boltzmann-BGK equation in velocity space which
relates the lattice Boltzmann method to the Grad 13-moment system. Truncation of
the Hermite expansion of the Boltzmann distribution function is seen as equivalent
to solving the Boltzmann-BGK equation for selected discrete microscopic velocity
values. Thus, a purely kinetic description of fluid systems equivalent to that obtained
through Grad’s expansion procedure is obtained. Contrary to Grad’s approach, the
discrete values of the distribution function instead of the moment integrals are used
as the state variables, resulting in a much simpler set of governing equations that
is kinetic in nature and uniform in form. As a result, higher approximations to the
Boltzmann equation beyond the Navier–Stokes level can be constructed easily in this
representation by merely expanding the equilibrium distribution to higher orders and
adopting quadratures of a sufficiently high degree of precision.

In this paper, we discuss the kinetic representation in detail. In § 2, we first provide
the necessary basic background in kinetic theory for the continuum Boltzmann
equation. We show how the conventional fluid quantities are related to the moment
integrals of the Boltzmann distributions. In § 3, we give a detailed description of
the new theoretical formulation in terms of expanding the Boltzmann equation onto
the Hermite basis. We demonstrate how the truncated Hermite basis is related to
the sufficient conditions for the requirements of the thermal and isothermal Navier–
Stokes fluids as well as higher-orders extensions. We show how the discretization of
the velocity space is directly related to the hydrodynamic moment integrations via
the Gauss–Hermite quadrature. In § 4, we show how various levels of truncations
in the Hermite basis correspond to the accuracy requirements in describing fluid
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dynamic properties that are associated with the degrees in non-equilibrium Boltzmann
distribution functions. This establishes a general rule for systematically formulating
models that are sufficient for the Navier–Stokes, Burnett fluids and beyond. In § 5,
we demonstrate that the popular lattice Boltzmann models can be derived as special
examples. Moreover, we describe how to go beyond the Navier–Stokes equation and
present some relevant high-order lattice Boltzmann models. Concluding remarks and
discussions are given in § 6. An Appendix on the mathematical details is also provided
for the sake of completeness.

2. Basic background–continuum Boltzmann-BGK equation
Without loss of generality, we consider a fluid system in D-dimensional space.

Let x be the Cartesian coordinates of the configuration space and ξ that of the
velocity space. The single particle distribution function, f (ξ , x, t), is defined such that
f (ξ , x, t) dξ dx represents the number of particles in the phase space element dξ dx
at time t .

The distribution function contains more detailed information about the fluid system
than the macroscopic thermodynamic variables do, as by definition, the latter are the
low-order moment integrals of f in velocity space. Specifically, the number density,
n(x, t), the mass density, ρ(x, t) ≡ mn(x, t), where m is the molecular mass of gas
particles, the fluid velocity, u(x, t) and the kinetic energy density per unit mass,
ε(x, t), are defined, respectively, as:

ρ(x, t) ≡ mn(x, t) = m

∫
f dξ , (2.1a)

ρu(x, t) = m

∫
f ξ dξ , (2.1b)

ρε(x, t) = 1
2
m

∫
f |ξ − u|2 dξ . (2.1c)

These are the conventional hydrodynamic variables corresponding to the basic
conservation laws of mass, momentum and energy. Also of great physical significance
are the second and third moments which are more conveniently considered in the
reference frame moving with the bulk of the fluid flow. Introducing the intrinsic
velocity, c = ξ − u(x, t), the full second and third moments are defined, respectively,
by:

Pij = m

∫
f cicj dc, Qijk = m

∫
f cicj ck dc, (2.2)

where the subscripts i, j, k denote Cartesian components. Here and throughout this
manuscript, we shall use vector and component notations for tensors interchangeably.
Einstein summation convention is implied for any repeated indices in the component
notation.

In the reference frame moving with the fluid, the component of the momentum
flux tensor, Pij , represents the rate of momentum transfer of the i-component in
the j -direction. Ignoring long-range intermolecular interactions, the hydrodynamic
pressure, p, can be found as the average of the diagonal components of Pij : p =
Pii/D = 2ρε/D. The traceless stress tensor σ is defined as:

σij = Pij − pδij , (2.3)
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where δij is the Kronecker delta function. For a monatomic ideal gas in D-dimensions,
the temperature, θ , is related to the internal energy density ρε by:

ρε =
D

2
nkBθ or ε =

DkBθ

2m
, (2.4)

where kB is the Boltzmann constant. Thus, we have the ideal-gas equation of state:

p = nkBθ. (2.5)

The contracted third moment component,

1
2
qi ≡ 1

2
Qijj =

m

2

∫
f c2ci dc, (2.6)

is by definition the rate of heat transfer due to the molecular motion.
The evolution of the single-particle distribution function obeys the Boltzmann

equation. For simplicity, we describe the analytical formulation based on the BGK
collision model. As our starting point, f satisfies the following equation (often known
as the Krook equation):

∂f

∂t
+ ξ · ∇f + g · ∇ξf = −1

τ

[
f − f (0)

]
. (2.7)

Here, τ is the characteristic relaxation time of collisions to equilibrium, ∇ξ the
gradient operator in velocity space, and g the acceleration from the external or
self-generated body-force field. f (0) represents a local equilibrium distribution (i.e.
Maxwell–Boltzmann) in the reference frame moving with the bulk of the flow:

f (0) = ρ

(
m

2πkBθ

)D/2

exp

[
− mc2

2kBθ

]
. (2.8)

For convenience, we choose the characteristic velocity to be c0 ≡
√

kBθ0/m0, where
θ0 and m0 are, respectively, the characteristic temperature and the unit of mass of the
gas molecules, which in a single-component gas can be chosen simply as the molecular
mass of the gas particles. c0 is easily recognized as the sound speed at temperature
θ0. On scaling all velocities with respect to c0 and choosing the characteristic length
and time scales, l0 and t0 respectively, such that l0 = c0t0, all equations above remain
unchanged except that (2.5) becomes p = ρθ and (2.8) takes the following simpler
dimensionless form:

f (0) =
ρ

(2πθ)D/2
exp

[
− c2

2θ

]
. (2.9)

Hereinafter (2.1) and (2.7) are to be understood as dimensionless with all velocities,
ξ , u and c, measured in the units of c0. Of course, at constant temperature θ = 1, the
sound speed in the gas system is unity. We shall return to the topic of scaling when
devising a computation scheme by discretizing space and time.

Equations (2.1), (2.7) and (2.9) are a closed set of integro-differential equations. Their
solution gives the full time history of the (2D)-dimensional single particle distribution
function. For most practical purposes this is not only computationally too expensive,
but is also unnecessary. The fundamental hydrodynamic variables corresponding to
the first few moments of the distribution function (equations (2.1)) are sufficient to
describe macroscopic flow properties. Their governing equations can be constructed
by taking the moments of (2.7). Using the fact that the moment integrals of (2.1) lead
to the vanishing right-hand side of (2.7) and after some straightforward algebraic
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manipulations, we arrive at the following familiar conservation equations for mass,
momentum and total energy:

∂ρ

∂t
+

∂ρui

∂xi

= 0, (2.10a)

ρ
dui

dt
+

∂Pij

∂xj

= ρgi, (2.10b)

ρ
dε

dt
+ Pij

∂ui

∂xj

+
1

2

∂qi

∂xi

= 0, (2.10c)

where,

d

dt
=

∂

∂t
+ ui

∂

∂xi

(2.11)

is the Lagrangian derivative. Though exact, the above equations are not closed because
of the appearance of high-order moments, Pij and qi , in the equations for lower-order
moments.

In the Chapman–Enskog approximation (Chapman & Cowling 1970), approxima-
tions to the distribution function f in terms of hydrodynamic variables and their
derivatives are obtained successively. With the BGK collision model, the Chapman-
Enskog procedure of obtaining hydrodynamic equations is greatly simplified (see
Huang 1987). It is critical to notice that the forms of the macroscopic equations
obtained through such a procedure only depend on the leading moments of
the distribution function instead of the full form of the distribution function.
Consequently, truncation of the higher-order terms in the Hermite expansion of
the distribution function has no explicit effect on the macroscopic equations. We shall
return to this point later.

Alternative to the Chapman–Enskog procedure, in a series of papers published more
than half a century ago, Grad (1949b, 1952) argued that the fluid equations obtained
above cannot be sufficient for all purposes and suggested that the stress tensor and the
heat flux be treated on an equal footing with the conventional thermohydrodynamic
variables. He obtained a set of partial differential equations for the thirteen most sig-
nificant moments, namely ρ, u, θ , σij and qi , by expanding the Boltzmann distribution
function in terms of Hermite polynomials. In the next section, by applying the same
Hermite expansion technique and noticing the correspondence between the Hermite
expansion coefficients of a Hermite-truncated function and the function values at a
special set of discrete velocities, we can approximate the Boltzmann-BGK equation by
a small set of discrete kinetic equations. The approximation is essentially equivalent to
that employed in the Grad 13-moment system. Better still, it produces a set of uniform
kinetic equations that permit easy extension to higher-degree approximations.

3. Projecting Boltzmann-BGK onto Hermite basis
3.1. Moments and truncated Hermite series

We seek solutions to (2.1), (2.7) and (2.9) by expanding f (x, ξ , t) in Hermite (Gram–
Charlier) polynomials. The mathematical property of the Hermite polynomials,
especially that in higher dimensions, has been extensively treated by Grad (1949a).
As demonstrated below, a unique feature in using the Hermite polynomials as the
expansion basis rather than any other functions is that the expansion coefficients
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correspond precisely to the velocity moments up to the given degrees. Some necessary
mathematical knowledge is summarized in the Appendix.

Following the standard procedure, we expand the distribution function f in terms
of the dimensionless Hermite ortho-normal polynomials in velocity space ξ :

f (x, ξ , t) =ω(ξ )

∞∑
n=0

1

n!
a(n)(x, t)H(n)(ξ ). (3.1)

Note that both a(n) and H(n) are rank-n tensors and the product on the right-hand
side denotes full contraction. The dimensionless expansion coefficients, a(n)(x, t), are
given by

a(n)(x, t) =

∫
f (x, ξ , t)H(n)(ξ ) dξ , (3.2)

where the integration is carried over the entire dimensionless velocity space of ξ .
Evidently from (3.2), all the expansion coefficients are linear combinations of the

velocity moments of f . Specifically, on substituting the explicit expressions of the
Hermite polynomials (equations (A 3)) into (3.2), the first few expansion coefficients
are directly identified with the familiar hydrodynamic variables:

a(0) =

∫
f dξ = ρ, (3.3a)

a(1) =

∫
f ξ dξ = ρu, (3.3b)

a(2) =

∫
f (ξ 2 − δ) dξ = P + ρ(u2 − δ), (3.3c)

a(3) =

∫
f (ξ 3 − ξδ) dξ , = Q + ua(2) − (D − 1)ρu3. (3.3d)

Here and throughout the manuscript, we have adopted the shorthand notations of
Grad (1949a) for fully symmetric tensors. The product of two tensors always means
the sum of all possible permutations of tensor product. For instance, ua(2) stands for
uia

(2)
jk +uja

(2)
ik +uka

(2)
ij . In addition, the power of a vector such as u3 denotes the direct

vector products uuu which is not to be confused with the power of the norm of the
vector, u3.

Evidently, the thermohydrodynamic variables can be expressed in terms of the
low-order Hermite expansion coefficients:

ρ = a(0), (3.4a)

ρu = a(1), (3.4b)

P = a(2) − ρ(u2 − δ), (3.4c)

Q = a(3) − ua(2) + (D − 1)ρu3, (3.4d)

while the internal energy is:

ρε = 1
2

[
a

(2)
ii − ρ(u2 − D)

]
. (3.5)

Therefore, the five fundamental thermohydrodynamic variables, ρ, u and θ (= 2ε/D),
and the momentum flux tensor P (or its traceless part, the stress tensor σ ) are
completely determined by the first three Hermite expansion coefficients alone, whereas
the third moment, i.e. the heat flux q, is completely determined by the fourth
coefficient.
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Owing to the mutual orthogonality of Hermite polynomials, the leading moments
of a distribution function up to N th order are preserved by truncations of the
higher-order terms in its Hermite expansion. Consequently, a distribution function
can be approximated by its projection onto a Hilbert subspace spanned by the first
N Hermite polynomials without changing the first N moments, i.e.

f (x, ξ , t) ≈ f N (x, ξ , t) =ω(ξ )

N∑
n =0

1

n!
a(n)(x, t)H(n)(ξ ). (3.6)

Here, up to N th order, f N (x, ξ , t) has exactly the same velocity moments as
the original f (x, ξ , t) does. This guaranties that a fluid dynamic system can be
constructed by a finite set of macroscopic variables (thermohydrodynamic moments).
Indeed, in Grad’s 13-moment system, the governing differential equations for the basic
thermohydrodynamic variables (ρ, u, θ) and their fluxes are derived from a properly
truncated Hermite expansion.

3.2. Discretization of velocity space

Instead of formulating a macroscopic descriptions in terms of thermohydrodynamic
variables, we seek approximations to the Boltzmann-BGK equation, i.e. (2.7), by
remaining in the kinetic level of representation via suitable truncated Hermite
expansions. It is crucial to realize that as a partial sum of Hermite series with finite
terms, the truncated distribution function of (3.6) can be completely and uniquely
determined by its values at a set of discrete abscissae. This is true because with f

truncated to order N , the integrand on the right-hand side of (3.2) can be written as:

f N (x, ξ , t)H(n)(ξ ) = ω(ξ )p(x, ξ , t), (3.7)

where p(x, ξ , t) is a polynomial in ξ of a degree not greater than 2N . Using the
Gauss–Hermite quadrature (c.f. the Appendix), a(n) in (3.2) can be precisely expressed
as a weighted sum of the functional values of p(x, ξ , t):

a(n) =

∫
ω(ξ )p(x, ξ , t) dξ =

d∑
a=1

wap(x, ξ a, t) =

d∑
a=1

wa

ω(ξ a)
f N (x, ξ a, t)H(n)(ξ a), (3.8)

where wa and ξ a , a = 1, . . . , d , are, respectively, the weights and abscissae of a Gauss–
Hermite quadrature of a degree � 2N . Hence, the set of discrete function values,
{f N (x, ξ a, t) : a = 1, . . . , d}, completely determines f N and therefore its first N

velocity moments, and vice versa. The discrete distribution function values f N (ξ a)
can serve as a new set of fundamental variables for defining the fluid system in place
of the conventional thermohydrodynamic variables. That is, as long as f N (ξ a) are
known, the system is known to the same level of detail as defined by the first N

fundamental thermohydrodynamic moments.
The governing equations for f N (ξ a) can be obtained by projecting (2.7) on a

Hermite-truncated basis and evaluating at ξ a . This can be accomplished term by term
in (2.7). First, the Maxwell–Boltzmann distribution f (0) on the right-hand side of (2.7)
must be truncated according to (3.6). Let a(n)

0 be the nth Hermite coefficient of f (0).
Using (3.2), we have

a(n)
0 =

∫
f (0)H(n)(ξ ) dξ . (3.9)
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Notice from (2.9) and (A 1) that

f (0) =
ρ

(
√

θ )D
ω

(
ξ − u√

θ

)
, (3.10)

after a change of the dummy variable (ξ − u)/
√

θ → η, we have

a(n)
0 = ρ

∫
ω(η)H(n)(

√
θη + u) dη. (3.11)

Using (A 3), the leading Hermite coefficients of the Maxwellian are obtained as:

a(0)
0 = ρ, (3.12a)

a(1)
0 = ρu, (3.12b)

a(2)
0 = ρ[u2 + (θ − 1)δ], (3.12c)

a(3)
0 = ρ[u3 + (θ − 1)δu], (3.12d)

a(4)
0 = ρ[u4 + (θ − 1)δu2 + (θ − 1)2δ2]. (3.12e)

The explicit Hermite expansion of the Maxwellian f (0) is therefore:

f (0)(ξ ) = ω(ξ )ρ


1 + ξ · u + 1

2
[(ξ · u)2 − u2 + (θ − 1)(ξ 2 − D)]︸ ︷︷ ︸

2nd order

+
ξ · u
6

[(ξ · u)2 − 3u2 + 3(θ − 1)(ξ 2 − D − 2)]︸ ︷︷ ︸
3rd order


 . (3.13)

Notice, all the terms proportional to θ − 1 vanish for an ‘isothermal’ system in which
θ =1.

3.3. Formulation of the body-force term

The third term on the left-hand side of (2.7) represents the effect of body forces
and should also be projected onto the truncated Hermite basis. However, this term
involves derivatives in ξ and cannot be expressed directly using the values of the
distribution function alone. Fortunately, its Hermite expansion can be obtained from
the expansion of f by taking the derivative of (3.1) and using (A 2) repeatedly
(Martys, Shan & Chen 1998):

∇ξf =

∞∑
n=0

1

n!
a(n)∇ξ

(
ωH(n)

)
=

∞∑
n=0

(−1)n

n!
a(n)∇n+1

ξ ω

= −ω

∞∑
n=0

1

n!
a(n)H(n+1) = − ω

∞∑
n=1

1

n!
na(n−1)H(n). (3.14)

Defining F (ξ ) ≡ −g · ∇ξf , we have the following Hermite expansion of the body
force term:

F (ξ ) = ω

∞∑
n=1

1

n!
ga(n−1)H(n), (3.15)
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where, ga(n−1) denotes the symmetric tensor product of g and a(n−1). Once again,
Grad’s short-hand notation is used here to designate the sum of all n permutations
of tensor product between g and a(n−1) by ga(n−1).

Since the leading Hermite coefficients of f are given by (3.3), we have

a(0) = a(0)
0 , a(1) = a(1)

0 , a(2) = a(2)
0 + σ , (3.16)

where σ is the stress tensor defined in (2.3). Thus, the expression for F (ξ ) can be
determined order by order. For terms up to the third order, it explicitly gives:

F (ξ ) = ω(ξ )ρ


g · ξ︸︷︷︸

1st

+ (g · ξ )(u · ξ ) − g · u︸ ︷︷ ︸
2nd order

+
1

2ρ
a(2)
[
(g · ξ )H(2)(ξ ) − 2gξ

]
︸ ︷︷ ︸

3rd order


 . (3.17)

3.4. Boltzmann-BGK with discrete velocities

We are now ready to obtain the governing equations for f N (ξ a). Hereinafter, we shall
omit the superscript N , and the distribution function is understood to be restricted
in the truncated subspace. Applying Gauss–Hermite quadrature to (2.1) gives:

ρ =

d∑
a=1

waf (ξ a)

ω(ξ a)
, (3.18a)

ρu =

d∑
a=1

waf (ξ a)ξ a

ω(ξ a)
, (3.18b)

P + ρu2 =

d∑
a=1

waf (ξ a)ξ aξ a

ω(ξ a)
. (3.18c)

The trace of the last equation yields:

ρ(Dθ + u2) =

d∑
a=1

waf (ξ a)ξ
2
i

ω(ξ a)
. (3.19)

Defining fa(x, t) =waf (x, ξ a, t)/ω(ξ a), for a = 1, . . . , d , the above equations become:

ρ =

d∑
a=1

fa, (3.20a)

ρu =

d∑
a=1

faξ a, (3.20b)

P + ρuu =

d∑
a=1

faξ aξ a, (3.20c)

ρ(Dθ + u2) =

d∑
a=1

faξ
2
a . (3.20d)

Next, after moving the body force term to the right-hand side, (2.7) becomes:

∂f

∂t
+ ξ · ∇f = −1

τ

[
f − f (0)

]
+ F (ξ ). (3.21)
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By directly evaluating at ξ a and multiplying by the constants wa/ω(ξ a), we obtain the
following equations for fa:

∂fa

∂t
+ ξ a · ∇fa = −1

τ

[
fa − f (0)

a

]
+ Fa (a = 1, . . . , d), (3.22)

where on the right-hand side,

f (0)
a ≡ wa

ω(ξ a)
f (0)(ξ a) = waρ


1 + ξ a · u︸ ︷︷ ︸

1st order

+ 1
2

[
(ξ a · u)2 − u2 + (θ − 1)

(
ξ 2
a − D

)]︸ ︷︷ ︸
2nd order

+
ξ a · u

6

[
(ξ a · u)2 − 3u2 + 3(θ − 1)

(
ξ 2
a − D − 2

)]
︸ ︷︷ ︸

3rd order

+ · · ·


 , (3.23)

and

Fa ≡ wa

ω(ξ a)
F (ξ a) = waρ


 ξ a · g︸ ︷︷ ︸

1st order

+ (ξ a · g)(ξ a · u) − g · u︸ ︷︷ ︸
2nd order

+
1

2ρ
a(2)
[
(ξ a · g)H(2)(ξ a) − 2gξ a

]
︸ ︷︷ ︸

3rd order

+ · · ·


 . (3.24)

Note that in (3.24), the first- and second-order terms do not depend on the non-
equilibrium properties in fa . However, the third-order terms and those beyond do
involve the information of the full fa .

It is convenient to absorb the body force term of (3.24) into f (0)
a in (3.22) to form

an effective equilibrium distribution f (eq)
a ≡ f (0)

a + τFa , so that we can write

∂fa

∂t
+ ξ a · ∇fa = −1

τ

[
fa − f (eq)

a

]
. (3.25)

Combining (3.1) and (3.15), f (eq) has the following Hermite expansion:

f (eq) = ω

∞∑
n=1

1

n!

[
a(n)

0 + τ ga(n−1)
]
H(n). (3.26)

Using (3.12) and (3.16), the leading expansion coefficients of f (eq), noted by a(n)
eq , are:

a(0)
eq = ρ, (3.27a)

a(1)
eq = ρ[u + τ g], (3.27b)

a(2)
eq = ρ[u2 + τ gu + (θ − 1)δ], (3.27c)

a(3)
eq = ρ[u3 + τ gu2 + (θ − 1)δ(u + τ g)] + τ gσ . (3.27d)

If we define a ‘post-collide’ velocity u′ = u + τ g, it is straightforward to rewrite the
above as:

a(0)
eq = a(0)

0 (ρ, u′, θ), (3.28a)

a(1)
eq = a(1)

0 (ρ, u′, θ), (3.28b)
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a(2)
eq = a(2)

0 (ρ, u′, θ) − ρτ 2 g2, (3.28c)

a(3)
eq = a(3)

0 (ρ, u′, θ) − ρτ 2 g2u − ρτ 3 g3 + τ gσ . (3.28d)

Therefore, the ‘effective’ equilibrium distribution is the Maxwellian distribution with
a local velocity of u′, plus a high-order correction f ′:

f (eq)
a = f (0)

a (ρ, u′, θ) + f ′
a. (3.29)

Using (3.28), f ′
a can be written explicitly as:

f ′
a = ρτ 2[g2 − (g · ξ i)

2] + ρτ 2

{
(u · ξ i)

2
[g2 − (g · ξ i)

2] + (g · ξ i)(g · u)

}

+ 1
6
ρτ 3(g · ξ i)[3g2 − (g · ξ i)

2] + τ

[
(g · ξ i)

2
σ : ξ aξ a − g · σ · ξ a

]
, (3.30)

where the first term on the right-hand side is the correction in the second-order
terms, and the rest are the corrections to the third-order terms. Note again that the
stress tensor σ is not a constant of motion, and must be evaluated using (3.20c).
Evidently, ignoring terms of orders equal to or higher than τ 2, the effect of the body
force acceleration g can be approximated by simply adding τ g to the ‘pre-collide’
velocity u.

The above procedure is rigorously defined for any orders. However, for comparison
with results in existing literature (that are essentially only valid up to second order),
we present in (3.31) the explicit expression of the above up to second order:

f (eq)
a = waρ

{
1 + ξ a · u′ + 1

2

[
(ξ a · u′)2 − u′2 + (θ − 1)

(
ξ 2
a − D

)]
+

τ 2

2
[(ξ a · g)2 + g2]

}
. (3.31)

Other than the term proportional to (θ − 1), which vanishes in iso-thermal flows,
and terms proportional to τ 2g2, this is the same as the form originally proposed by
Shan & Chen (1993). Furthermore, we compare the above expression to some models
proposed by He, Chen & Doolen (1998a) and Guo, Zheng & Shi (2002) in which
f (0)

a is given in terms of ū ≡ u + g/2 plus an additional term linear to g. Once
again, it can be shown directly that they differ only by terms equal to or higher than
g2. Although all these are similar in forms, there are two fundamental distinctions.
First of all, the result obtained in the present formulation corresponds to a defined
order of accuracy for the macroscopic moments. Clearly, the differences in (3.31)
among different models can be attributed to error terms resulting in the second-
order approximation. Secondly, unlike the previous approaches, the new formulation
is not obtained via a posteriori matching for the resulting macroscopic dynamics.
Furthermore, higher than the second-order approximations can be systematically and
straightforwardly constructed according to the new procedure described above, which
is virtually impossible via the previous approaches. More discussions on this subject
are provided in the subsequent sections.

In summary (3.20) and (3.22)–(3.24) form a closed set of differential equations
governing the set of variables fa(x, t) in configuration space. The macroscopic
thermohydrodynamic variables and their fluxes can be calculated directly from their
corresponding moment summations. Consequently, this set of variables encompasses
equivalent dynamic information about the fluid system to that represented by the
thermohydrodynamic variables up to a specified moment order. The second order
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(N =2) is necessary for representing ρ, u, T and the momentum flux tensor P ,
and the macroscopic dynamics for ρ and u is described in a self-contained manner
by (3.20) and (3.22)–(3.24). On the other hand, to describe the dynamics of the
internal energy of a fluid system, the third-order (N = 3) Hermite terms must be
retained, as the heat flux is a component of the third moment of the distribution
function. Contrary to the macroscopic thermohydrodynamic equation representations,
these discrete-velocity Boltzmann equations are kinetic in nature. The form of these
equations is simple and they represent an approximation to the original continuum
Boltzmann equation via preserving its moments up to a specifically defined order.
More importantly, higher moment order approximations to the Boltzmann equation
can be systematically accomplished according to the above theoretical procedure.

4. Accuracy determination consistent with Chapman–Enskog expansion
The moment expansion procedure for the construction of the discrete Boltzmann

equations is in spirit the same as that for obtaining the Grad 13-moment system.
The accuracy and the range of validity in its resulting hydrodynamic behaviour are
directly related to the order of truncation used in the Hermite series. Each specific
truncation represents a well-defined approximation to the original Boltzmann-BGK
equation. The level of accuracy is increased as higher-order terms in the truncated
expansion are retained and quadratures of sufficient degree of precision employed.
The necessary condition for representing the first N hydrodynamic moments has been
extensively described in the previous section. On the other hand, it is important to
also measure the degree of accuracy from its range in covering macroscopic physics.
Here, we seek a general estimation for capturing the relevant physical effects that are
associated with the level of departure from equilibrium in the Boltzmann distribution
function. This estimation can be inferred through a procedure of the Chapman–
Enskog expansion. As we know, the Chapman–Enskog expansion can be interpreted
as an expansion in power of the Knudsen number whose value provides a measure
of the degree of deviation of the Boltzmann distribution from its local equilibrium.
For normal fluid flows involving slow time and large spatial scale variations, such a
departure is usually small, and hence their corresponding Knudsen number values
are small. Strictly speaking, the Navier–Stokes description is valid for such fluid
flows only because it is derived from the Boltzmann equation by retaining terms
only up to the first order in the Chapman–Enskog expansion. For fluid flows of
high Knudsen number, higher-order terms in the Chapman–Enskog expansion are
required to capture those no longer negligible physical effects. Unfortunately, as
discussed earlier, forming closed macroscopic dynamic equations via higher-order
truncations in the Chapman–Enskog expansion encounters tremendous difficulties.
Obviously, owing to the kinetic level representation, we do not suffer from this kind
of closure issue when going beyond the Navier–Stokes level physics. Nevertheless, the
Chapman–Enskog expansion as a procedure can be useful for providing a theoretical
measure in determining the order of truncation in the Hermite series for a given
desired accuracy requirement. In other words, we can use the Chapman–Enskog
expansion to infer a sufficient condition for the terms retained in the truncated
Hermite basis that is required for describing flows of certain Knudsen number orders.

According to Chapman & Cowling (1970), we can expand f asymptotically in
powers of the Knudsen number K:

f = f (0) + Kf (1) + K2f (2) + · · ·, (4.1)
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where at the zeroth order, f (0) is the equilibrium distribution of the Maxwell–
Boltzmann form. Furthermore, the time and spatial variations are also measured in
powers of K, namely,

∂t = K∂
(0)
t + K2∂

(1)
t + · · · (4.2)

and ∇ = K∇. On substituting the above expressions into (2.7) and matching terms in
the same powers of K, we arrive at the following general recurrence relation between
the distributions of order k + 1 and those of order k and lower:

f (k+1) = −τ

[
k∑

m=0

∂
(k)
t f (m) + ξ · ∇f (k) + g · ∇ξf

(k)

]
. (4.3)

Specifically, the first- and the second-order distributions, respectively, are given below,

f (1) = −τ
(
∂

(0)
t + ξ · ∇ + g · ∇ξ

)
f (0), (4.4a)

f (2) = −τ
[(

∂
(0)
t + ξ · ∇ + g · ∇ξ

)
f (1) + ∂

(1)
t f (0)

]
. (4.4b)

Let a(n)
k be the Hermite coefficient of f (k), namely

f (k) = ω(ξ )

∞∑
n=0

1

n!
a(n)

k (x, t)H(n)(ξ ). (4.5)

On substituting (4.5) into (4.3) and using (3.14), we obtain:

a(n)
k+1 = −τ

[
k∑

m=0

∂
(k)
t a(n)

k−m + ξ · ∇a(n)
k − ga(n−1)

k

]
. (4.6)

Using the recurrence relation (A 4) to remove the dependence on ξ of the second
term, the Hermite expansion of f (k+1) is obtained as the following:

a(n)
k+1 = −τ

[
k∑

m=0

∂
(k)
t a(n)

k−m + n∇a(n−1)
k + ∇ · a(n+1)

k − nga(n−1)
k

]
. (4.7)

We realize from (4.7) that the nth Hermite coefficients in f (k+1) depend only on the
spatial and temporal derivatives of the Hermite coefficients in f (k) of orders up to
n + 1. Truncating the Hermite series of f (k) beyond the nth order do not affect the
leading n − 1 Hermite expansion coefficients in f (k+1). Consequently, if Hermite terms
of order up to n are retained in the expansion of f (0) in (2.7), the first n − k Hermite
coefficients in the kth order of Chapman–Enskog expansion will be the same as if
the full Maxwellian is used in (2.7). This property is extremely important as it defines
a general rule that allows approximations to the Boltzmann equation at any level
(measured in power of Knudsen) to be constructed by simply retaining terms at a
sufficient order in the Hermite expansion and using a Gauss–Hermite quadrature of
sufficient order. Moreover, this property is significant as we further notice that the
momentum and energy dynamics depend on f only through its second and third
moments Pij and qi , or equivalently the Hermite coefficients of up to the second and
the third orders. This indicates that we must ensure the accuracy for terms up to the
second or the third order in Hermite expansion. According to (4.7), the nth Hermite
terms in f (k) depend on the accuracy of the (n+1)th terms in f (k−1), subsequently the
nth hydrodynamic moment at the kth Chapman–Enskog level of approximation is
satisfied if the Maxwell–Boltzmann equilibrium distribution is accurate up to (n+k)th
order terms in Hermite expansion. For example, for the first-order (the Navier–Stokes
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level) Chapman–Enskog, the Maxwell–Boltzmann equilibrium distribution must be
approximated in Hermite expansions to the third order in order for the pressure tensor
and the momentum dynamics to be accurate at the Navier–Stokes level. It is worth
noting that most LBE models (Qian et al. 1992; Chen & Doolen 1998) (other than
a few (Chen et al. 1997)) correspond only to the second-order Hermite expansion.
If, in addition, the heat flux and the energy dynamics must be accurate up to the
Navier–Stokes level, then the fourth-order Hermite terms must be kept in the Hermite
expansion of the equilibrium distribution function. More significantly, this property
defines a general theoretical procedure for systematically formulating kinetic models
beyond the conventional Navier–Stokes level of validity and accuracy. Specifically,
by retaining up to the fourth-order terms in the Hermite expansion, we can satisfy
the Burnett level accuracy pertaining to the fluid momentum evolution for isothermal
systems, whereas the accuracy for the energy evolution and thermohydrodynamics is
achieved at the Burnett level of accuracy if the fifth-order terms in Hermite series are
retained.

In summary, we have demonstrated theoretically that the hydrodynamic behaviour
of our discrete Boltzmann-BGK equation system can be made to correspond to any
defined level in the Chapman–Enskog expansion, provided that sufficient terms up
to a given order in (3.23) and (3.24) are retained and the quadrature formula of a
sufficient degree of precision adopted. Here, the Chapman–Enskog analysis is used
only to indicate a general measure of the order of accuracy as opposed to explicitly
constructing macroscopic models, the resulting kinetic equation does not suffer from
the closure problems encountered in the conventional representations.

5. Lattice-Boltzmann equations and extensions
In this section, we show that the commonly used LBE models are the Hermite

expansions at some specific level of truncation. On the other hand, the order of
accuracy is clearly determined using the new theoretical procedure. Furthermore,
higher-order models can be formulated systematically. Gauss–Hermite quadratures
in two- and three-dimensions are given in tables 2 and 3. The naming convention is
defined in terms of three numbers as in Ed

D,n, where D is the dimension of the space, d
the number of points (discrete velocity values) employed by the quadrature, and n the
algebraic degree of precision. Comparing with the family of square and cubic lattice
Boltzmann models of Qian et al. (1992), it is evident that the set of particle velocities
in models D2Q9, D3Q15 and D3Q19 are, respectively, the abscissae in E9

2,5, E15
3,5 and

E19
3,5 scaled by a constant factor of c =

√
3. (In conventional LBE models, the length

scale is chosen to be the lattice spacing, whereas in the discussion heretofore the length
scale is chosen to be the distance that a sound wave travels in a unit of time. This
difference can be trivially resolved by rescaling the length scales in our discussion by
a constant c so that in the new length scale, the ξ a corresponding to the unit lattice
spacing becomes 1. In the rescaled unit, the reference sound speed becomes 1/c.) The
weights, t0 – t3, are also identical to the weights of the corresponding quadratures. The
equilibrium distribution function, given in a form in which the velocities are scaled
with respect to the sound speed, is exactly the second-order truncation of (3.23) with a
constant unity temperature θ = 1. In the hexagonal lattice Boltzmann model of Chen
et al. (1992a), the set of possible particle velocities are the abscissae of E7

2,5 scaled
with the constant c = 2, in agreement with the sound speed of 1/2. On substituting
the quadrature abscissae and weights into the second-order truncation of (3.23), we
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arrive at the following equilibrium distribution function in lattice units:

f
(0)
0 = ρ(1 − 2θ − u2), (5.1a)

f (0)
a =

ρ

6
[2θ + 2ea · u + 4(ea · u)2 − u2] (a = 1, . . . , 6). (5.1b)

Identifying 1 − 2θ with the undetermined constant d0 in Chen et al. (1992a), the above
expressions are identical to the equilibrium distribution function therein.

In both models, only terms of up to the second order are retained in the
Hermite expansion of the Maxwellian distribution to recover the momentum equation.
However, according to the analysis in the previous section, the third-order terms in
the Hermite expansion are required for the Navier–Stokes level of description in
Chapman–Enskog expansion to survive the truncation in Hermite spectral space. The
error introduced into f (1) by this insufficiency in expansion can be identified from
(4.7) as

f ′(1) =
τω

2
∇ · a(3)

0 H(2). (5.2)

Consequently, the corresponding error in the first-order Chapman–Enskog correction
to the pressure tensor is:

P
′(1)
ij ≡

∫
f ′(1)cicj dξ =

τ

2
∇ · a(3)

0

∫
ωH(2)cicj dξ , (5.3)

where c= ξ − u. The tensor, cicj , can be expanded Hermite polynomials as the
following:

cicj = ξiξj − ξiuj − ξjui + uiuj

= H(2)
ij − uj H(1)

i − uiH(1)
j + (uiuj + δij )H(0). (5.4)

Using the orthogonal relation, the integral in the right-hand side of (5.3) can be
evaluated: ∫

ωH(2)
kl cicj dξ =

∫
ωH(2)

kl H(2)
ij dξ = δikδjl + δilδjk. (5.5)

As neither model tries to simulate the energy equation, both models correspond to a
constant θ . In most of the applications of these models, θ is further assumed to be
unity. Hence, the error

P
(1)
ij ∼ τu2∇ · u (5.6)

is of the form of O(Ma3), which manifests as an error in viscosity of order u2, in
agreement with Qian & Orszag (1993). To avoid such an inaccuracy in the momentum
equation, Hermite expansion up to the third order should be employed. The resulting
equilibrium distribution function thus contains terms of the fluid velocity to the cubic
power (Chen et al. 1997). Since, as described in the previous section, the order in
Hermite expansion N requires quadrature degree n � 2N , an accurate Navier–Stokes
level of description for an isothermal momentum equation requires a quadrature of a
degree of precision greater than 6. Examples of such a quadrature are given in table 2
as E12

2,7 and E16
2,7 in two dimensions, and in table 3 as E27

3,7 and E33
3,7 in three dimensions.

It is critical to note that discrete models beyond the Navier–Stokes level of
approximation can be obtained by including higher-order terms in the Hermite
expansion of the Boltzmann equation and using a quadrature formula of sufficient
degree. In particular, to ensure accuracy up to the Burnett order for isothermal
fluids, strictly speaking we must include the Hermite expansion up to N � 4, and
the quadrature degree up to n � 8. Two examples of such a quadrature are given as
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E25
2,9 and E125

3,9 , which are constructed out of E5
1,9 according to the Gauss ‘production’

formulae as described in the Appendix. The corresponding equilibrium distribution
function contains terms up to O(u4). On the other hand, for sufficiently small Mach
number, the higher-order errors may be ignored. By retaining terms up to the third-
order in (3.23) and (3.24), and employing a degree-7 quadrature formula such as
E12

2,7 and E16
2,7 in two dimensions or E27

3,7 and E33
3,7 in three dimensions, we obtain

discrete velocity models which recover the momentum equation at the Burnett level
for isothermal fluids. However, for thermohydrodynamic flows, these only recover the
energy equation up to the Navier–Stokes level.

It is easy to recognize that the LBE models of Qian et al. (1992) and Chen et al.
(1992a) are formally first-order finite-difference approximations of (3.20) and (3.22)–
(3.23) on special spatial grids. We discretize (3.22) in configuration space (x, t) by
employing first-order upwind finite-difference approximation for the time derivative
on the left-hand side:

∂fa(x, t)

∂t
+ ξ a · ∇fa(x, t) ∼=

1


t
[fa(x + ξ a
t, t + 
t) − fa(x, t)] . (5.7)

For convenience, we choose the time step 
t = 1, which leads to the following standard
form of the Lattice Boltzmann equation:

fa(x + ξ a, t + 1) − fa(x, t) = −1

τ

[
fa − f (0)

a

]
, (5.8)

on a spatial grid that is invariant under the transform x → x + ξ a , meaning that if x
is a node of the grid, x + ξ a are also nodes of the grid. Indeed, the quadratures E7

2,5,

E9
2,5, E15

3,5 and E19
3,5 all satisfy this requirement and yield the hexagon LBGK model,

and the D2Q9, D3Q15 and D3Q19 LBGK models, respectively. It is well known
that such a first-order finite-difference approximation achieves second-order accuracy
because of absorption of error in propagation into the effective viscosity.

The abscissae in most of the quadratures in tables 2 and 3 are not expressible
as integer multiples of a common constant. For example, we can easily see that the
ratios among different velocity values in E27

3,7 are not rational. Models of this kind
cannot be directly implemented on any simple lattices since the discrete velocities
do not all coincide with the lattice nodes. The most straightforward solutions are
the pointwise interpolation schemes suggested by He, Luo & Dembo (1996) or the
volumetric formulation by Chen (1998). It should be pointed out that the errors
introduced in the spatial discretization are non-essential, for these go to zero as
spatial solution increases. This is to be differentiated from the intrinsic error in
approximating the continuum Boltzmann system in discrete velocities, for the errors
in the latter remain finite in spite of the spatial resolutions. Nevertheless, we should
still adopt higher-order finite-difference or finite-volume schemes in order to minimize
numerical diffusions when spatial resolutions are not adequate.

The quadrature formulae given in table 2 are by no means exhaustive. In higher
dimensions, for a given degree of precision, finding the minimal number of points
remains an active research topic. The key requirement is generally to produce the
highest degree of precision with the minimal number of discrete values. This is
desirable both from computational expense and accuracy considerations. However,
Gaussian quadratures with discrete values made of integer multiples of a common
constant are beneficial since the simple LBE form (5.8) can be realized. Besides a
simple form, the simple LBE form has the advantage of ensuring an exact advection
of the particle distribution function. Unlike the finite-difference (fractional advection)
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Figure 1. Time histories of peak velocity in shear decay simulated by the D2Q9 model and
a two-dimensional projection of the 39 point model. The Knudsen number is 0.5 for all cases.
�, D3Q19; ×, D3Q19, diagonal; �, 39 point model; +, 39 point model, diagonal.

or finite-volume schemes, the simple LBE (5.8) generates zero diffusion in particle
advection regardless of the distance it travels. For instance, using the non-productive
formulation specified in the Appendix, E13

3,5 has the same degree of precision (= 5) as

E15
3,5 and E19

3,5, but with only 13 discrete velocity values. The price paid is, unlike E15
3,5

or E19
3,5, velocities in E13

3,5 no longer fall on a simple lattice.
As an example to demonstrate the advantages of the new approach, simulations on

the problem of transverse momentum decay at Knudsen number K ≡ 2πτc0/L = 0.5
were carried out in a periodic box, using both D2Q9 and a two-dimensionally
projected 39-point LBM model corresponding to the quadrature E39

3,7. The shear
was applied along a direction either parallel or diagonal to the lattice Cartesian
coordinate. Note that the decay rate in the Navier–Stokes system is determined by
its shear viscosity. The existing LBM models, e.g. D3Q19 or D2Q9, can only capture
such a basic feature at sufficiently small Knudsen numbers and encounter difficulties
at higher Knudsen numbers. Figure 1 shows that the decay rates using D2Q9 exhibit
an orientational dependency, while such a numerical artefact is completely removed
in our new LBM model.

6. Discussion
In this paper, we have provided the details of a theoretical framework of LBE

methods, originally proposed by Shan & He (1998). Using the Hermite expansion
approach, fluid flows can be systematically approximated by constructing higher-order
LBE models. Hydrodynamic moments (fluxes) at various levels can be precisely and
explicitly determined at a given order of truncations. This is of central importance for
the purposes of studying fluid flow at high Knudson numbers, where non-equilibrium
contributions to the moments and hydrodynamic fluxes can no longer be ignored.
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Compared with the standard LBE formulations, the new approach does not rely on
any knowledge at the macroscopic level and does not need a posteriori coefficient
matching, yet the agreement with macroscopic physics can be assessed order-by-
order. The resulting LBE models remain in the kinetic level of representation, and
retain many advantages both physically and numerically as discussed in the previous
sections.

Another apparent difference is in the resulting LBE models for thermohydro-
dynamics. The typical forms for equilibrium distributions in standard thermal LBE
has temperature θ appear in the denominators (Chen et al. 1997) as opposed to a
constant (∼θ0). Examining this more closely, the difference can be traced back to the
scaling of microscopic velocity ξ by the temperature. It can be realized that the
non-dimensionalized ξ based on a dynamical temperature encounters issues of
commutating with spatial and temporal operators in the Boltzmann equation, so
that the Hermite expansion procedure cannot be carried out (at least not easily). This
difference has implications in terms of doing numerical simulations at higher Mach
numbers. By definition, the Mach number is essentially the ratio of fluid velocity to
the square root of the temperature. The standard thermal LBE can be interpreted
as an expansion in terms of the local dynamic Mach number, while those from the
Hermite expansions correspond to that of the characteristic Mach number. On the
other hand, there is no strict requirement on the choice of value for θ0 in principle.
Hence, we may choose a higher value to ensure smaller values for the higher-order
terms in the polynomial function of the equilibrium distribution.

The original Boltzmann equation was derived under the assumption of ideal gas
model and the effect of intermolecular interaction was neglected. Under kinetic repres-
entation, intermolecular interaction of a fluid system can be treated by employing the
mean-field approximation widely used in liquid theory (Rowlinson & Widom 1982).
The effect of intermolecular interaction is approximated by an additional body force
field that can then be incorporated into the kinetic equation as discussed in § 3 and by
Martys et al. (1998). This mean-field approximation was at the centre of a previously
proposed lattice Boltzmann model for non-ideal gases (Shan & Chen 1993, 1994)
and has also been shown by Martys (1999) to be consistent with the classic kinetic
theory for dense gases. The microscopic interaction causes a momentum exchange in
the system at various locations in addition to that caused by free streaming of the
particles. Of course, it is crucial that the overall momentum in the system is conserved
in the absence of boundary or external influences. Regardless of the spatial scale at
which the momentum of the particles is examined, be it microscopic or mesoscopic,
the momentum of the particle or the collection of particles under scrutiny changes in
response to the interaction. It is this additional momentum exchange that gives rise
to the potential part of the pressure tensor that plays a central role in the calculation
of various equilibrium properties in a phase-separated system (Rowlinson & Widom
1982). The first LBE model that is fully consistent with the above requirements was
formulated over ten years ago by Shan & Chen (1993). Clearly, except for the high-
order corrections, it has been shown further by He, Shan & Doolen (1998b) that this
model can be related to the effective potential used in the Enskog theory of dense
gases.

The moment expansion approach provides a better mean in the design of new
discretization schemes by fully searching through the parameter spaces. The full
analysis in solving the Boltzmann-BGK equation with the forcing term is our basis
for further developing the discrete Boltzmann method for modelling complex fluids.
The forcing term is a gateway for introducing either potential forces or other external
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forces into the discrete Boltzmann scheme. For multiphase fluids modelling, molecular
forces specified by interaction potentials in this bottom-up approach can be readily
incorporated via the forcing term of formulation presented in the previous sections.
We wish to point out an important difference between the kinetic based approach
for multiphase and those complex fluid models that are based on Navier–Stokes
formulations by imposing some modified equations of state; even though at the
equilibrium level, one may try to claim (as has been done recently) that the latter ‘can’
reproduce ‘all’ the relevant physics. Letting alone numerical simulation issues, such
a claim is certainly not correct for situations where the non-equilibrium effects are
significant, as is demonstrated in (3.30). Indeed, non-equilibrium effects are expected
to be important at sharp interfaces as well as for high Mach- and Knudson-number
flows. It is difficult (if not impossible) to capture these subtle, but important effects
accurately in the existing macroscopic (hydrodynamic) representations. As a matter
of principle, there is no self-consistent way macroscopically to include higher-order
non-equilibrium effects in an a priori manner. On the contrary, a kinetic theory based
(‘bottom up’) approach is fundamental in capturing these subtle physical properties.

Work on flow behaviour in microfluidics attracts enormous attention. As the
Knudsen number increases, the Navier–Stokes equation is no longer adequate
to capture the underlying fundamental physics, and its conventional higher-order
corrections encounter known intrinsic difficulties. The fundamental physics is
examplified by the so-called Knudsen minimum phenomenon (see Knudsen 1909;
Cercignani 1975; Kang, Crone & Jhon 1999; Al-Ghoul & Eu 2004). The existing
LBE models have been shown to have a certain intrinsic capability of exhibiting
such an phenomenon (see Lim et al. 2002). Unfortunately, the discrete artefacts
in these LBM are substantial enough to render the results only qualitative and
suggestive at best. Certainly, the extended LBE derived from the new approach here
is directly suitable for quantitative studies of such problems. Another closely related
class of applications is for the air bearing problem in disk drive devices. Since the
spacing for head disk interfaces is often in submicron scales, aerodynamic stability,
lubrication, as well as issues of heat transfer become extremely difficult properties
to understand (Fukui & Kaneko 1987; Kang et al. 1999). In particular, the usual
no-slip boundary condition is no longer valid at finite Knudsen numbers, whereas
extensive studies and modelling have been going on since the Maxwell slip model
over a century ago (Maxwell 1879). We expect that the present kinetic theory based
framework can offer fundamental insights into these problems, especially concerning
boundary-layer formations and wetting dynamics. Moreover, the new theoretical
formulation presented here allows for simulations of flows at higher-Mach-number
values. Indeed, with expanded discrete velocity spaces, higher-order terms in powers
of fluid velocity in the LBE equilibrium distributions can be retained. Specifically, as
given in the previous sections, the maximum allowable power of the velocity terms in
the distribution is a direct consequence of the order of Hermite expansions. On the
contrary, most of the existing LBE models do not contain terms higher than O(u4).

Complex fluids, such as macromolecules, colloidal dispersions, bloods, mucin,
synovial fluids and other functional biological fluids, exhibit a hierarchy of the charac-
teristic length scales corresponding to the relevant microscopic structures. They usually
show non-Newtonian behaviour as their characteristic relaxation times are much
longer than those of simple liquids. Their dynamic processes in various length and
time scales are usually strongly correlated. The small scale of microfluidics makes flow
of large deformation rate easily accessible. Hence, even a low-viscosity dilute polymer
solution with short relaxation time can reach a high-Deborah-number flow regime, in
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which elastic forces dominate over viscous forces, and so exhibit strong viscoelastic
effects. Flow-induced phase separation of polymer solutions (Yuan & Jupp 2002; Jupp,
Kawakatsu & Yuan 2003), can be much more pronounced. Thus progress in micro-
fluidics gives rise to new opportunities for studying the fundamental physics of com-
plex fluids in very strong viscoelastic flow regimes. As the dimensions of microfluidics
become comparable with the intrinsic length scales of hierarchical microstructures in
complex fluids, new physics start to emerge. The impact of miniaturizing fluidics on the
behaviour of complex fluids is expected to be much larger and more complex. There
are examples of turbulence-like instabilities (Groisman & Steinberg 2000) in the flows
of polymer solutions at modest-Reynolds-number, but high-Deborah-number regimes.
The present work provides a concrete theoretical basis for constructing an efficient
multiple-scale computational platform for predictive modelling of such an ‘elastic tur-
bulence’ and many other physical phenomena of complex fluids in microscopic flows.

Finally, it is straightforward to apply the Hermite moment expansion formulation
to fluids involving multiple chemical species (components). Unlike the differences
between isothermal and thermal flow situations, the requirement in terms of the
order of accuracy for modelling multiple component fluids (including long-range
interactions) is not expected to be much higher than that for the single component
case. At low order, we can naturally expect recovery of the well-known scalar transport
equation at the macroscopic level where the diffusion obeys Fick’s law. However, the
new formulation allows us to construct LBE models at higher orders. This is useful for
studying situations such as at higher Knudson-number regimes in which non-trivial
scalar transport (diffusion) phenomena are to be exhibited.

We are grateful to Dr Raoyang Zhang of Exa Corporation for his help in producing
the numerical results. X. S. and X.Y. would like to thank the EPSRC (UK) for a
visiting fellowship (GR/M94755) supporting X. S. visit to King’s College London,
University of London.

Appendix. Hermite polynomials and Gauss–Hermite quadrature
The subject of Hermite polynomials in high dimensions has been extensively treated

by Grad (1949a). In D-dimensional Cartesian coordinates (ξ ), the weight function
associated with the Hermite polynomials is

ω(ξ ) =
1

(2π)D/2
exp(−ξ 2/2), (A 1)

where ξ 2 = ξ · ξ . The nth-order Hermite polynomial is defined by the Rodrigues’
formula:

H(n)(ξ ) =
(−1)n

ω(ξ )
∇nω(ξ ). (A 2)

which is an nth rank symmetric tensor and an nth degree polynomial in ξ . The first
few polynomials are:

H(0)(ξ ) = 1, (A 3a)

H(1)
i (ξ ) = ξi, (A 3b)

H(2)
ij (ξ ) = ξiξj − δij , (A 3c)

H(3)
ijk(ξ ) = ξiξj ξk − ξiδjk − ξj δik − ξkδij . (A 3d)
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The recurrence relation of Hermite polynomials is:

ξiH(n)(ξ ) = H(n+1)(ξ ) + δiH(n−1)(ξ ). (A 4)

Here and throughout the manuscript, the short-hand notation of Grad (1949a) is
adopted. A product such as the second term on the right-hand side of (A4) denotes a
summation of n terms in which the second subscript of δi is one of the n subscripts
and H(n−1) having the other n − 1, that is, (A 4) is to be understood as

ξiH(n)
i1i2...in

= H(n+1)
ii1i2...in

+

n∑
k=1

δiik H
(n−1)
i1i2...ik−1ik+1...in

. (A 5)

The Hermite polynomials form a set of orthonormal bases of the Hilbert space of
the functions of ξ with the inner product 〈f, g〉 =

∫
ωfg dξ . They satisfy the following

orthogonal relation: ∫
ω(ξ )H(m)

i (ξ )H(n)
j (ξ ) dξ = δmnδ

n
i j , (A 6)

where i is an abbreviation for the n-fold indices i1i2 . . . in; δn
i j is equal unity if the

indices (i1, i2, . . . , in) are a permutation of (j1, j2, . . . , jn), and zero otherwise. Any
function, f (ξ ), that is square integrable can be expanded in terms of the Hermite
polynomials as:

f (ξ ) =

∞∑
n=0

a(n)
i H(n)

i (ξ ), (A 7)

where the Einstein summation notation is understood for the n-tuple index i .
Multiplying by ω(ξ )H(m)

j and integrating, we obtain:∫
ω(ξ )f (ξ )H(m)

j (ξ ) dξ = a(m)
i δm

i j = m!a(m)
j . (A 8)

The last equality holds because there are n! distinct permutations of the indices
(i1, i2, . . . , in) and a(n)

i is fully symmetric. Alternatively, it is sometimes more convenient
to use the expansion

f (ξ ) = ω(ξ )

∞∑
n=0

1

n!
a(n)

i H(n)
i (ξ ), (A 9)

with the expansion coefficients given by

a(n)
i =

∫
f (ξ )H(n)

i (ξ ) dξ . (A 10)

For a given function f (ξ ), Gaussian quadrature seeks to obtain the best estimate

of the integral
∫ b

a
ω(ξ )f (ξ ) dξ by choosing the optimal set of abscissae ξa, a =1, . . . , n

such that: ∫ b

a

ω(ξ )f (ξ ) dξ ∼=
n∑

a=1

waf (ξa), (A 11)

where ω(x) is an arbitrary weighting function and wa, a = 1, . . . , n a set of constant
weights. The above estimate is said to have an algebraic degree of precision of m

if for any f that is a polynomial of a degree up to m, exact equality holds in
(A 1). The choice of ξa is made to maximize the algebraic degree of precision for the
given number of abscissae n. The fundamental theorem of gaussian quadrature (see
Krylov 1962) states that the optimal abscissae of the n-point Gaussian quadrature are
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Quadrature ξa wa

E1
1,1 0 1

E2
1,3 ±1 1/2

E3
1,5 0 2/3

±
√

3 1/6

E4
1,7 ±

√
3 −

√
6 (3 +

√
6)/12

±
√

3 +
√

6 (3 −
√

6)/12

E5
1,9 0 8/15

±
√

5 −
√

10 (7 + 2
√

10)/60

±
√

5 +
√

10 (7 − 2
√

10)/60

Table 1. One-dimensional Gauss–Hermite quadrature formulae. ξ are the abscissae and w the
weights. A quadrature formula is named by three numbers as in Ed

D,n, where D is the dimension
of the space, n the algebraic degree of precision, and d the number of points employed by
the quadrature. In one dimension, the algebraic degree of precision is 2n − 1, where n is the
number of abscissae used in the quadrature.

precisely the roots of the nth corresponding orthogonal polynomial, and the weights
are given by:

wa =
〈Pn−1, Pn−1〉

Pn−1(ξa)P ′
n(ξa)

, (A 12)

where P ′
n =dPn/ dx. Equation (A 11) has an algebraic degree of precision of 2n − 1.

In one dimension, the Gauss–Hermite quadrature is the Gauss quadrature over the
interval (−∞, ∞) with respect to the weight function of (A 11). The corresponding
orthogonal polynomials are the Hermite polynomials and the abscissae of the n-point
quadrature are the zeros of H(n). Taking the derivative of (A 2), we obtain

dH(n)

dξ
= ξH(n) − H(n+1) = nH(n−1). (A 13)

Using (A 4) and (A 6), the corresponding weights are:

wa =
n!

[nH(n−1)(ξa)]2
. (A 14)

Table 1 gives the numerical values of the abscissae and weights of Gauss–Hermite
quadratures up to n= 5, degree-9. For convenience, we shall hereinafter name the
quadrature formulae by the convention Ed

D,m where D is the dimension of the space,
m (=2n − 1 in one dimension) is the algebraic degree of precision, and d (=n in one
dimension) is the number of points employed in the quadrature. For example, E9

2,5

denotes a degree-5 quadrature formula in two dimensions employing 9 points.
In higher dimensions, no general Gauss quadrature theory is known. Nevertheless,

a class of Gauss–Hermite formulae known as ‘production’ formulae can be derived
form one-dimensional formulae. Consider the following type of multiple integrals:

1

(2π)D/2

∫
exp (−ξ 2/2)p(ξ ) dξ (A 15)
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where p(ξ ) is a D-dimensional polynomial of degree n of the following general form:

p(ξ ) =
∑

n1+···+nD�n

an1n2···nD

D∏
j=1

ξ
nj

j . (A 16)

We notice that for each individual term, the integration is separable and an
approximation to the integral can be obtained by applying the one-dimensional
formula repeatedly. Let wa and ξa , a = 1, . . . , n, be the weights and abscissae of a
one-dimensional degree-n quadrature formula, for each term in the equation above,
we can write:

1

(2π)D/2

∫
exp (−ξ 2/2)

D∏
j=1

ξ
nj

j dξ =

D∏
j=1

(
1√
2π

∫
exp(−ξ 2

j /2)ξ
nj

j dξj

)

=

D∏
j=1

( n∑
a=1

waξ
nj

a

)
=

n∑
k1=1

· · ·
n∑

kD=1

wk1
· · ·wkD

ξ
n1

k1
· · ·ξnD

kD
,

(A 17)

where the second equality holds because nj � n for all j . If we define the D-
dimensional abscissae as the vectors ξ k1···kD

= (ξk1
, ξk2

, . . . , ξkD
), and the corresponding

weights as wk1···kD
= wk1

wk2
· · · wkD

, ki = 1, . . . , d for i = 1, . . . , D – there are a total of
dD pairs of them – and multiply (A 17) by the coefficient an1 ···nD

and sum over all
terms, we obtain the following D-dimensional Gauss–Hermite quadrature formula
based on the one-dimensional formula:

1

(2π)D/2

∫
exp(−x2/2)p(x) dx =

∑
wk1···kD

p(ξ k1···kD
). (A 18)

Particularly, applying the one-dimensional formula E3
1,5 in two- and three-dimensions

yields E9
2,5 and E27

3,5 in table 2, both of degree 5.

For the case of degree-5 quadrature in three dimensions, the production formula E27
3,5

employs all the 27 Cartesian grid points. By examining (A 17), quadrature formulae
that do not require all the 27 points can be obtained. We denote the weight of
the abscissa (0, 0, 0) by w(0,0,0), that of the abscissa (0, 0,

√
3) by w(0,0,1) and so on.

Because of symmetry requirements, the weights of the abscissae belonging to the same
symmetry group must equal each other, e.g. w(0,0,1) = w(0,0,−1) = w(0,1,0) etc. Without
loss of generality, we let n1 � n2 � n3. Obviously, n1 � 1, since ni � 0 for i =1, 2, 3
and n1 + n2 + n3 � 5. At n1 = 1, the integral is always zero because the integrand is
antisymmetric with respect to the plane ξ1 = 0. As long as the weights are symmetric
with respect to the plane ξ1 = 0, the sum on the right-hand side of (A 17) is zero and
the quadrature is exact. In the case of n1 = 0, where the integrand is a two-dimensional
function, the quadrature is exact if and only if the weights reduce to that of E9

2,5 by
satisfying the following relation:

w(0,0,0) + 2w(0,0,1) = 4/9, (A 19a)

w(0,0,1) + 2w(0,1,1) = 1/9, (A 19b)

w(0,1,1) + 2w(1,1,1) = 1/36, (A 19c)

where on the right-hand side are the weights of E9
2,5. Noticing that there is one fewer

equation than the number of variables, the general solution is given by the parametric
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Quadrature ξ a Group p wa

E6
2,4 (0, 0) A 1 1/2

2
(
cos 2nπ

5
, sin 2nπ

5

)
B 5 1/10 n = 1, . . . , 5

E7
2,5 (0, 0) A 1 1/2

2
(
cos nπ

3
, sin nπ

3

)
B 6 1/12 n = 1, . . . , 6

E9
2,5 (0, 0) A 1 4/9

(
√

3, 0)FS B 4 1/9

(±
√

3, ±
√

3) C 4 1/36

E12
2,7 (r, 0)FS A 4 1/36 r2 = 6

(±s, ±s) B 4 (5 + 2
√

5)/45 s2 = (9 − 3
√

5)/4

(±t, ±t) C 4 (5 − 2
√

5)/45 t2 = (9 + 3
√

5)/4

E16
2,7 (r, 0)FS A 4 (5 − 2

√
6)/48 r2 = 3 +

√
6

(s, 0)FS B 4 (5 + 2
√

6)/48 s2 = 3 −
√

6
(r, s)FS C 8 1/48

E17
2,7 (0, 0) A 1 (575 + 193

√
193)/8100

(r, 0)FS B 4 (3355 − 91
√

193)/18 000 r2 = (125 + 5
√

193)/72

(±r, ±r) C 4 (655 + 17
√

193)/27 000

(±2r, ±2r) E 4 (685 − 49
√

193)/54 000

(3r, 0)FS D 4 (1445 − 101
√

193)/162 000

Table 2. Gauss–Hermite quadrature formulae in two dimensions. Here, p is the number of
abscissae in the symmetry class. The subscript FS denotes a fully symmetric set of points.
The abscissae of quadrature E6

2,4 correspond to the vertices of a pentagon. The abscissae of
quadrature E7

2,5 correspond to the vertices of a hexagon. E9
2,5 is a ‘production’ formula of E3

1,5

in two dimensions. E12
2,7 and E16

2,7 are due to Stroud (1971) and their abscissae are depicted in

figure 2. E17
2,7 is obtained by solving (A 25) on a Cartesian grid.

equation: 


w(0,0,0)

w(0,0,1)

w(0,1,1)

w(1,1,1)


 =

1

72




8(2 − t)

4(t − 2)

2t

1 − t


 . (A 20)

At t = 0 and 1, we obtain formulae E15
3,5 and E19

3,5 using 15 and 19 of the grid points,

respectively. In addition, E27
3,5 corresponds to the special case of t = 2/3.

Non-production quadrature formulae requiring fewer points can be obtained
using other methods. A comprehensive list of quadrature formulae for the integral∫

exp(−ξ 2)f (ξ ) dξ is given by Stroud (1971). They can be easily converted for use
with the weight function (A 1). Let ξ ′

i and w′
i be the abscissae and weights for the

integral
∫

exp(−ξ 2)f (ξ ) dξ , namely,∫
exp(−ξ 2)f (ξ ) dξ =

∑
w′

af (ξ ′
a). (A 21)

After the transforms ξ = ζ/
√

2 and f (ξ ) = g(
√

2ξ ) and multiplying by π−D/2, we have

1

(2π)D/2

∫
exp(−ζ 2/2)g(ζ ) dζ =

∑ w′
a

πD/2
g(

√
2ξ ′

a). (A 22)
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Quadrature ξ a Group p wa

E13
3,5 (0, 0, 0) A 1 2/5

(±r, ±s, 0) B 4 1/20 r2 = (5 +
√

5)/2

(0, ±r, ±s) B 4 1/20 s2 = (5 −
√

5)/2
(±s, 0, ±r) B 4 1/20

E15
3,5 (0, 0, 0) A 1 2/9

(
√

3, 0, 0)FS B 6 1/9

(±
√

3, ±
√

3, ±
√

3) C 8 1/72

E19
3,5 (0, 0, 0) A 1 1/3

(
√

3, 0, 0)FS B 6 1/18

(
√

3,
√

3, 0)FS C 12 1/36

E27
3,5 (0, 0, 0) A 1 8/27

(
√

3, 0, 0)FS B 6 2/27

(
√

3,
√

3, 0)FS C 12 1/54

(±
√

3, ±
√

3, ±
√

3) D 8 1/216

E27
3,7 (0, 0, 0) A 1 (720 ± 8

√
15)/2205

(r, 0, 0)FS B 6 (270 ∓ 46
√

15)/15435 r2 = (15 ±
√

15)/2

(s, s, 0)FS C 12 (162 ± 41
√

15)/6174 s2 = 6 ∓
√

15

(±t, ±t, ±t) D 8 (783 ∓ 202
√

15)/24 696 t2 = 9 ±
√

15

Two formulae, use either upper or lower sign.

E39
3,7 (0, 0, 0) A 1 1/12

(r, 0, 0)FS B 6 1/12 r2 = 3/2
(±r, ±r, ±r) C 8 1/27
(2r, 0, 0)FS D 6 2/135
(2r, 2r, 0)FS E 12 1/432
(3r, 0, 0)FS F 6 1/1620

Table 3. Gauss–Hermite quadrature formulae in three dimensions. E13
3,5 is the minimum

degree-5 quadrature known in three dimensions. Its abscissae correspond to the vertices of a
icosahedron. E15

3,5, E19
3,5 and E27

3,5 are ‘production’ formulae of E3
1,5 in three dimensions. They

correspond to the D3Q15, D3Q19 and D3Q27 LBGK models. Qian et al. (1992) respectively.
E27

3,7 is due to Stroud (1971). E39
3,7 is obtained by solving (A 25) on a Cartesian grid.

Therefore, for the type of integrals in (A 15), the abscissae and weights are ξ a =
√

2ξ ′
a

and wa = w′
a/πD/2. Some of the quadratures in table 2 are adopted from Stroud (1971).

Of particular interests are E7
2,5 and E13

3,5 which are the known degree-5 formulae with
the smallest number of points in two- and three-dimensions, respectively. Quadratures
E12

2,7 and E16
2,7 are also adopted from Stroud (1971). Figure. 2 shows the abscissae of

these two quadratures.
Except for a few special cases, the abscissae of the Gauss–Hermite quadratures

discussed so far generally do not coincide with normal Cartesian coordinates.
Sometimes it is highly desirable to have quadratures with abscissae being the
grid points of Cartesian coordinates. It is worth pointing out that quadratures
on predefined abscissae can be constructed by explicitly solving (A 11) with f

being a polynomial of degree m. Let {Pi(ξ ), i =0, . . . , ∞} be the set of orthonormal
polynomials on the interval [a, b] with respect to the weight function ω(ξ ), which is
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A
B

(a) (b)

C

A
B
C

Figure 2. Abscissae of two degree-7 Gauss–Hermite quadrature formulae in two–dimensions:
(a) E12

2,7 and (b) E16
2,7. The unit circle in the middle depicts the sound speed. The type of symbols

denotes the symmetry group that an abscissa belongs to (cf. table 2).

normalized so that
∫ b

a
ω dξ =1. It follows the orthonormal relation that P0 = 1, and∫ b

a

ω(x)Pi(ξ ) dξ =

{
1, i = 0,

0, i = 0.
(A 23)

Since {Pi, i = 0, . . . , ∞} is a complete set of expansion bases, f can be expanded as

f (ξ ) =

m∑
i=0

aiPi(ξ ), (A 24)

where ai are the expansion coefficients. Obviously, (A 11) is exact if and only if wa

and ξa satisfy the following equations:

d∑
a=1

waPi(ξa) =

{
1, i = 0,

0, i = 1, . . ., m.
(A 25)

For a given set of abscissae, solutions to the above equations generally exist as long
as a sufficient number of abscissae are used. Of course, the number of abscissae
is greater than the number of abscissae in the optimal Gauss quadratures which
are obtained when the abscissae are allowed to change. On substituting the multi-
dimensional Hermite polynomials into (A 25), and choosing the abscissae as the grid
points of Cartesian coordinates (up to a constant scaling factor), we obtain two
degree-7 quadratures, E17

2,7 and E39
3,7.
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